Human midbrain precursors activate the expected developmental genetic program and differentiate long-term to functional A9 dopamine neurons in vitro. Enhancement by Bcl-X(L).

نویسندگان

  • Emma G Seiz
  • Milagros Ramos-Gómez
  • Elise T Courtois
  • Jan Tønnesen
  • Merab Kokaia
  • Isabel Liste Noya
  • Alberto Martínez-Serrano
چکیده

Understanding the molecular programs of the generation of human dopaminergic neurons (DAn) from their ventral mesencephalic (VM) precursors is of key importance for basic studies, progress in cell therapy, drug screening and pharmacology in the context of Parkinson's disease. The nature of human DAn precursors in vitro is poorly understood, their properties unstable, and their availability highly limited. Here we present positive evidence that human VM precursors retaining their genuine properties and long-term capacity to generate A9 type Substantia nigra human DAn (hVM1 model cell line) can be propagated in culture. During a one month differentiation, these cells activate all key genes needed to progress from pro-neural and pro-dopaminergic precursors to mature and functional DAn. For the first time, we demonstrate that gene cascades are correctly activated during differentiation, resulting in the generation of mature DAn. These DAn have morphological and functional properties undistinguishable from those generated by VM primary neuronal cultures. In addition, we have found that the forced expression of Bcl-X(L) induces an increase in the expression of key developmental genes (MSX1, NGN2), maintenance of PITX3 expression temporal profile, and also enhances genes involved in DAn long-term function, maintenance and survival (EN1, LMX1B, NURR1 and PITX3). As a result, Bcl-X(L) anticipates and enhances DAn generation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Efficient generation of A9 midbrain dopaminergic neurons by lentiviral delivery of LMX1A in human embryonic stem cells and induced pluripotent stem cells.

Human embryonic stem cells (hESC) and induced pluripotent stem cells (iPSC) offer great hope for in vitro modeling of Parkinson's disease (PD), as well as for designing cell-replacement therapies. To realize these opportunities, there is an urgent need to develop efficient protocols for the directed differentiation of hESC/iPSC into dopamine (DA) neurons with the specific characteristics of the...

متن کامل

Acquisition of in vitro and in vivo functionality of Nurr1-induced dopamine neurons.

Neural precursor cells provide an expandable source of neurons and glia for basic and translational applications. However, little progress has been made in directing naive neural precursors toward specific neuronal fates such as midbrain dopamine (DA) neurons. We have recently demonstrated that transgenic expression of the nuclear orphan receptor Nurr1 is sufficient to drive dopaminergic differ...

متن کامل

Transplantation site influences the phenotypic differentiation of dopamine neurons in ventral mesencephalic grafts in Parkinsonian rats

Foetal midbrain progenitors have been shown to survive, give rise to different classes of dopamine neurons and integrate into the host brain alleviating Parkinsonian symptoms following transplantation in patients and animal models of the disease. Dopamine neuron subpopulations in the midbrain, namely A9 and A10, can be identified anatomically based on cell morphology and ascending axonal projec...

متن کامل

Neural precursors derived from human embryonic stem cells maintain long-term proliferation without losing the potential to differentiate into all three neural lineages, including dopaminergic neurons.

Human embryonic stem (hES) cells have the ability to renew themselves and differentiate into multiple cell types upon exposure to appropriate signals. In particular, the ability of hES cells to differentiate into defined neural lineages, such as neurons, astrocytes, and oligodendrocytes, is fundamental to developing cell-based therapies for neurodegenerative disorders and studying developmental...

متن کامل

Preclinical Analysis of Fetal Human Mesencephalic Neural Progenitor Cell Lines: Characterization and Safety In Vitro and In Vivo

We have developed a good manufacturing practice for long-term cultivation of fetal human midbrain-derived neural progenitor cells. The generation of human dopaminergic neurons may serve as a tool of either restorative cell therapies or cellular models, particularly as a reference for phenotyping region-specific human neural stem cell lines such as human embryonic stem cells and human inducible ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Experimental cell research

دوره 318 19  شماره 

صفحات  -

تاریخ انتشار 2012